
Deriving Safety Cases from Machine-Generated Proofs
Nurlida Basir and Bernd Fischer
ECS, University of Southampton

SO17 1BJ, U.K
(nb206r,b.fischer)@ecs.soton.ac.uk

Ewen Denney
SGT, NASA Ames Research Center
Mountain View, CA 94035, U.S.A
Ewen.W.Denney@nasa.gov

Abstract

Proofs provide detailed justification for the validity of claims and are widely used in formal
software development methods. However, they are often complex and difficult to understand, because
they use machine-oriented formalisms; they may also be based on assumptions that are not justified.
This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical
applications. Here, we present an approach to develop safety cases that correspond to formal proofs
found by automated theorem provers and reveal the underlying argumentation structure and top-level
assumptions. We concentrate on natural deduction proofs and show how to construct the safety cases
by covering the proof tree with corresponding safety case fragments.

1 Introduction

Demonstrating the safety of large and complex software-intensive systems requires marshalling large
amounts of diverse information, e.g., models, code or mathematical equations and formulas. Obviously
tools supported by automated analyses are needed to tackle this problem. For the highest assurance
levels, these tools need to produce atraceable safety argumentthat shows in particular where the code as
well as the argument itself depend on any external assumptions but many techniques commonly applied
to ensure software safety do not produce enough usable evidence (i.e., justification for the validity of their
claims) and can thus not provide any further insights or arguments. In contrast, in formal software safety
certification [3], formal proofs are available as evidence.However, these proofs are typically constructed
by automated theorem provers (ATPs) based on machine-oriented calculi such as resolution [10]. They
are thus often too complex and too difficult to understand, because they spell out too many low-level
details. Moreover, the proofs may be based on assumptions that are not valid, or may contain steps
that are not justified. Consequently, concerns remain aboutusing these proofs asargumentsrather than
just evidencein safety-critical applications. In this paper we address these concerns by systematically
constructing safety cases that correspond to formal proofsfound by ATPs and explicitly highlight the use
of assumptions.

The approach presented here reveals and presents the proof’s underlying argumentation structure
and top-level assumptions. We work with natural deduction (ND) proofs, which are closer to human
reasoning than resolution proofs. We explain how to construct the safety cases by covering the ND proof
tree with corresponding safety case fragments. The argument is built in the same top-down way as the
proof: it starts with the original theorem to be proved as thetop goal and follows the deductive reasoning
into subgoals, using the applied inference rules as strategies to derive the goals. However, we abstract
away the obvious steps to reduce the size of the constructed safety cases. The safety cases thus provide
a “structured reading guide” for the proofs that allows users to understand the claims without having to
understand all the technical details of the formal proof machinery. This paper is a continuation of our
previous work to construct safety cases from information collected during the formal verification of the
code [2], but here we concentrate on the proofs rather than the verification process.

2 Formal Software Safety Certification

Formal software safety certificationuses formal techniques based on program logics to show that the
program does not violate certain conditions during its execution [3]. A safety propertyis an exact char-

E. Denney, T. Jensen (eds.); The 3rd International Workshop on Proof Carrying Code and Software Certification,
pp. 12-16

12

(nb206r,b.fischer)@ecs.soton.ac.uk
Ewen.W.Denney@nasa.gov

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

acterization of these conditions, based on the operationalsemantics of the programming language. Each
safety property thus describes a class of hazards. The safety property is enforced by asafety policy, i.e.,
a set of verification rules that take initial set of safety requirements that formally represent the specific
hazards identified by a safety engineer [8], and derive a number of proof obligations. Showing the safety
of a program is thus reduced to formally showing the validityof these proof obligations: a program is
considered safe wrt. a given safety property if proofs for the corresponding safety proof obligations can
be found. Formally, this amounts to showingD∪A |= P⇒C for each obligation i.e., the formalization
of the underlyingdomain theory Dand a set offormal certification assumptions Aentail a conjecture,
which consists of a set of premisesP that have to imply thesafety condition C.

The different parts of these proof obligations have different levels of trustworthiness, and a safety
case should reflect this. The hypotheses and the safety condition are inferred from the program by
a trusted software component implementing the safety policy, and their construction can already be
explained in a safety case [2]. In contrast, both the domain theory and the assumptions are manually
constructed artifacts that require particular care. In particular, the safety case needs to highlight the use
of assumptions. These have been formulated in isolation by the safety engineer and may not necessarily
be justified, and are possibly inconsistent with the domain theory. Moreover, fragments of the domain
theory and the assumptions may be used in different contexts, so the safety case must reflect which of
them are available at each context. By elucidating the reasoning behind the certification process and
drawing attention to potential certification problems, there is less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into Safety Cases

Natural deduction [6] systems consist of a collection of proof rules that manipulate logical formulas and
transform premises into conclusions. A conjecture is proven from a set of assumptions if a repeated
application of the rules can establish it as conclusion. Here, we focus on some of the basic rules; a full
exposition of the ND calculus can be found in the literature [6].

Conversion Process.ND proofs are simply trees that start with the conjecture to be proven as root, and
have given axioms or assumed hypotheses at each leaf. Each non-leaf node is recursively justified by the
proofs that start with its children as new conjectures. The edges between a node and all of its children
correspond to the inference rule applied in this proof step.The proof tree structure is thus a representation
of the underlying argumentation structure. We can use this interpretation to present the proofs assafety
cases[7], which are structured arguments as well and represent the linkage between evidence (i.e., the
deductive reasoning of the proofs from the assumptions to the derived conclusions) and claims (i.e., the
original theorem to be proved). The general idea of the conversion from ND proofs to safety cases is
thus fairly straightforward. We consider the conclusion asa goal to be met; the premise(s) become(s)
the new subgoal(s). For each inference rule, we define a safety case template that represents the same
argumentation. The underlying similarity of proofs and safety cases has already been indicated in [7]
but as far as we know, this idea has never been fully explored or even been applied to machine-generated
proofs (see Figure 1 for some example rules and templates). Here, we use the Goal Structuring Notation
[7] as technique to explicitly represent the logical flow of the proof’s argumentation structure.

Implications. The implication elimination follows the general pattern sketched above but in the in-
troduction rule we again temporarily assumeA as hypothesis together with the list of other available
hypotheses, rather than deriving a proof for it. We then proceed to deriveB, anddischargethe hypoth-
esis by the introduction of the implication. The hypothesisA can be used at given in the prove ofB,
but the conclusionA⇒ B no longer depends on the hypothesisA afterB has been proved. In the safety
case fragment, we use a justification to record the use of the hypothesisA, and thus to make sure that the

13

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

=>-Rules

∀∀∀∀-Rules

Safety Case Templates for =>-Rules

H |= A (tx)

H |= ∀x A(x)

J1: tx is an
arbitrary
fresh object

Show for an
arbitrary

element of the
domain (∀i)

J1: x can be
replaced by tx

Show for all
domain

elements (∀e)

H |= ∀x A(x)

H |= A (tx)

Safety Case Templates for ∀∀∀∀-Rules

Use implication to
reduce goal to new
subgoal (�e)

H |= (A�B) H |= A

H |= B

H U {A} |= B

H |= (A�B)

J1: {A} can be used
as hypothesis to
prove B

Suppose premise
is true (�i)

Figure 1: Safety Case Templates for Natural Deduction Rules

introduced hypotheses are tracked properly.

Universal quantifiers. The ND proof rules for quantifiers focus on the replacement ofthe bound
variables with objects and vice versa. For example, in the elimination rule for universal quantifiers, we
can conclude the validity of the formula for any chosen domain elementtx. In the introduction rule,
however, we need to show it for an arbitary but fresh objecttx (that is, a domain element which does not
appear elsewhere inH, A, or the domain theory and assumptions). If we can derive a proof of A, wherex
is replaced by the objecttx, we can then discharge this assumption by introduction of the quantifier. The
safety case fragments record this replacement as justification. The hypotheses available for the subgoals
in the∀-rules are the same as those in the original goals.

4 Hypothesis Handling

An automated prover typically treats the domain theoryD and the certification assumptionsA as premises
and tries to derive

∧
(D∪A)∧P⇒C from an empty set of hypotheses. As the proof tree grows, these

premises will be turned into hypotheses, using the⇒- introduction rule (see Figure 1). In all other rules,
the hypotheses are simply inherited from the goal to the subgoals. However, not all hypotheses will
actually be used in the proof, and the safety case should highlight those that are actually used. This is
particularly important for the certification assumptions.We can achieve this by modifying the template
for the⇒- introduction (see Figure 2a). We can distinguish between the hypotheses that are actually
used in the proof of the conclusion (denoted byA1, ...,Ak) and those that are vacuously discharged by
the⇒- introduction (denoted byAk +1, ..,An). We can thus use two different justifications to mark this
distinction. Note that this is only a simplification of the presentation and does not change the structure
of the underlying proof, nor the validity of the original goal. It is thus different from using arelevant
implication [1] under whichA⇒ B is only valid if the hypothesis A is actually used.

In order to minimize the number of hypotheses tracked by the safety case, we need to analyze the
proof tree from the leaves up, and propagate the hypotheses towards the root. By revealing only these
used hypotheses as assumptions, the validity of their use inderiving the proof can be checked more easily.
In our work, we also highlight the use of the external certification assumptions that have been formulated
in isolation by the safety engineer. For example, in Figure 2b, the hypothesis hasunit(float 7 0e minus 1,
ang vel), meaning that a particular floating point variable represents an angular velocity, has been speci-

14

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

H U {A1,..,Ak} |= B

H |= A1…∧ Ak ∧ Ak+1∧…AN � B

J1: {A1,..,Ak} used to
prove B Suppose premises

{A1,..,Ak} are true
(�i) J2: {Ak+1,…,AN} not

used to prove B

a)

Hypothesis has_unit(float_7_0e_
minus_1,ang_vel) is valid

Hypothesis is built by using
ang_vel_7_0e_minus_1_ rule

from the valid axiom

Argument over
establishment of

hypothesis

(Axiom)
ang_vel_7_0
e_minus_1_

C1:has_unit(float
_7_0e_ minus_1,
ang_vel) is an
external
hypothesis

Conclusion has_unit(float_7_0e_
minus_1,ang_vel) is valid

Argument over
Muscadet

stop_hyp_ rule

J1: The
conclusion
is valid if the
hypothesis
is valid

The conclusion to be
proved is an external

hypothesis

b)

Figure 2: Hypothesis Handling

S10: Partial order
reasoning

S1:
(axiom)
gt_5_4

S2:
(axiom)
gt_4_3

S12: Partial
order

reasoning

S11: Partial
order

reasoning

G13: leq (4, 5) G14: leq (3, 4)

G12: leq (3, 5)

J1: Based on
transitivity_leq
rule

J2: Based
on leq_gt1,
gt_5_4 rules

J3: Based
on leq_gt1,
gt_4_3 rules

Abstraction G12: leq (3, 5)

G13: leq (4, 5) G14: leq (3, 4)

G15: gt (5, 4) G16: gt (4, 3)

S13: leq_gt1

S11: leq_gt1

S10: transitivity_leq

S1:
(axiom)
gt_5_4

S2:
(axiom)
gt_4_3

S14: gt_4_3

S12: gt_5_4

S10: Partial
order reasoning

S1:
(axiom)
gt_5_4

S2:
(axiom)
gt_4_3

G12: leq (3, 5)

J1: Based on
transitivity_leq,
leq_gt1, gt_5_4
and gt_4_3
rules

Abstraction

Figure 3: Abstraction of Proof Safety Case

fied as external assumption. This is tracked properly in the safety case, and its role in deriving the proofs
can be checked easily.

5 Proof Abstraction

We have applied our approach to proofs found by the Muscadet [9] theorem prover during the formal
certification of the frame safety of a component of an attitude control system as an example. Muscadet is
based on ND, but to improve performance, it implements a variety of derived rules in addition to the basic
rules of the calculus. This includes rules for dedicated equality handling, as well as rules that the system
builds from the definitions and lemmas, and that correspond the application of the given definitions and
lemmas. While these rules make the proofs shorter, their large number makes the proofs also in turn
more difficult to understand. This partially negates the original goal of using a ND prover. We thus
plan to optimize the resulting proofs by removing some of thebook-keeping rules (e.g., returnproof)
that are not central to the overall argumentation structure. Similarly, we plan to collapse sequences of
identical book-keeping rules into a single node. In general, however, we try to restructure the resulting
proof presentation to help in emphasizing the essential proof steps. In particular, we plan to group sub-
proofs that apply only axioms and lemmas from certain obvious parts of the domain theory (e.g., ground
arithmetic or partial order reasoning) and represent them as a single strategy application. Figure 3 shows
an example of this. Here, the first abstraction step collapses the sequences rooted in G13 and G14, noting
the lemmas which had been used as strategies as justifications, but keeping the branching that is typical
for the transitivity. A second step then abstracts this awayas well.

15

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

6 Conclusions

We have described an approach whereby a safety case is used asa “structured reading” guide for the
safety proofs. Here, assurance is not implied by the trust inthe ATPs but follows from the constructed
argument of the underlying proofs. However, the straightforward conversion of ND proofs into safety
cases turn out to be far from satisfactory as the proofs typically contain too many details. In practice, a
superabundance of such details is overwhelming and unlikely to be of interest anyway so careful use of
abstraction is needed [5].

The work we have described here is still in progress. So far, we have automatically derived safety
cases for the proofs found by Muscadet prover [9]. This work complements our previous work [2]
where we used the high-level structure of annotation inference to explicate the top-level structure of
such software safety cases. We consider the safety case as a first step towards a fully-fledged software
certificate management system [4]. We also believe that our research will result in a comprehensive safety
case (i.e., for the program being certified the safety logic,and the certification system) that will clearly
communicate the safety claims, key safety requirements, and evidence required to trust the software
safety.

Acknowledgements. This material is based upon work supported by NASA under awards NCC2-1426 and
NNA07BB97C. The first author is funded by the Malaysian Government, IPTA Academic Training Scheme.

References

[1] A.R. Anderson and N. Belnap.Entailment: the logic of relevance and necessity. Princeton University Press,
1975.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a Safety Case for Automatically Generated Code from
Formal Program Verification Information.In SAFECOMP’08, pages 249–262, 2008.

[3] E. Denney and B. Fischer. Correctness of Source-Level Safety Policies . InProc. FM 2003: Formal Methods,
2003.

[4] E. Denney and B. Fischer. Software Certification and Software Certificate Management Systems (position
paper).Proceedings of the ASE Workshop on Software Certificate Management Systems (SoftCeMent ’05),
pages 1–5, 2005.

[5] E. Denney, J. Power, and K. Tourlas. Hiproofs: A Hierarchical Notion of Proof Tree. InProceedings of
the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI), volume
155, pages 341 – 359, 2006.

[6] M. Huth and M. Ryan.Logic in Computer Science Modelling and Reasoning about Systems, volume 2nd
Edition. Cambridge University Press, 2004.

[7] T. P. Kelly. Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis, University of
York, 1998.

[8] N. G. Leveson.Safeware: System Safety and Computers. Addison-Wesley, 1995.

[9] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem Prover Based on Natural Deduction. InIJCAR,
pages 685–689, 2001.

[10] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.ACM, 1965.

16

	Introduction
	Formal Software Safety Certification
	Converting Natural Deduction Proofs into Safety Cases
	Hypothesis Handling
	Proof Abstraction
	Conclusions

